First order optimality conditions and steepest descent algorithm on orthogonal Stiefel manifolds
نویسندگان
چکیده
منابع مشابه
Steepest descent on real flag manifolds
Among the compact homogeneous spaces, a very distinguished subclass is formed by the (generalized) real flag manifolds which by definition are the orbits of the isotropy representations of Riemannian symmetric spaces (sorbits). This class contains most compact symmetric spaces (e.g. all hermitian ones), all classical flag manifolds over real, complex and quaternionic vector spaces, all adjoint ...
متن کاملSteepest descent method for quasiconvex minimization on Riemannian manifolds
This paper extends the full convergence of the steepest descent algorithm with a generalized Armijo search and a proximal regularization to solve quasiconvex minimization problems defined on complete Riemannian manifolds. Previous convergence results are obtained as particular cases of our approach and some examples in non Euclidian spaces are given.
متن کاملOrthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds
Nonnegative matrix factorization (NMF) is a popular method for multivariate analysis of nonnegative data, the goal of which is decompose a data matrix into a product of two factor matrices with all entries in factor matrices restricted to be nonnegative. NMF was shown to be useful in a task of clustering (especially document clustering). In this paper we present an algorithm for orthogonal nonn...
متن کاملSteepest Descent
The steepest descent method has a rich history and is one of the simplest and best known methods for minimizing a function. While the method is not commonly used in practice due to its slow convergence rate, understanding the convergence properties of this method can lead to a better understanding of many of the more sophisticated optimization methods. Here, we give a short introduction and dis...
متن کاملOn the steepest descent algorithm for quadratic functions
The steepest descent algorithm with exact line searches (Cauchy algorithm) is inefficient, generating oscillating step lengths and a sequence of points converging to the span of the eigenvectors associated with the extreme eigenvalues. The performance becomes very good if a short step is taken at every (say) 10 iterations. We show a new method for estimating short steps, and propose a method al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization Letters
سال: 2018
ISSN: 1862-4472,1862-4480
DOI: 10.1007/s11590-018-1319-x